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A local-pseudopotential model is used to calculate the heat-capacity Debye temperature, the phonon
Griineisen parameters and lattice thermal-expansion coefficient, and the elastic constants and their pressure
derivatives. The only serious discrepancy between theory and experiment is in the long-wavelength-phonon
velocities. This discrepancy is most likely associated with the neglect of higher-order pseudopotential terms

in the long-wavelength dynamical matrix.

N a recent calculation, we adjusted the two param-
eters of a simple local pseudopotential to obtain a
good over-all fit to the phonon spectrum, and to the
Fermi-surface form factor, for aluminum.! Here we
compare with experiment several additional properties,
calculated for aluminum from the same pseudopotential,
namely, the heat-capacity Debye temperature, the
thermal-expansion coefficient, and the elastic constants
and their pressure derivatives. This comparison pro-
vides two useful results. First, the pseudopotential
model is found to give a reasonably good over-all
description of the harmonic and anharmonic properties
studied, but a rather poor description of properties
associated with the sound velocities becomes apparent.
Secondly, it is seen that comparison of calculations with
accurate specific-heat and thermal-expansion measure-
ments will provide sensitive tests of a detailed lattice-
dynamics model.

The temperature dependence of thermodynamic
quantities is generally measured at zero pressure P; in
this case both the dependence on the volume V and on
the temperature 7' contribute to the observed tem-
perature dependence. In comparison with theory, it is
useful to correct thermodynamically the experimental
data at each T, from the volume V corresponding to
P =0 to the fixed volume V corresponding to P=0 and
T=0. This is because it is much simpler to carry out
accurate calculations for a fixed volume, say Vo, and the
resulting comparison of theory and experiment then
allows one to draw more definite conclusions about the
theoretical model. Such thermodynamic corrections of
experimental data have been discussed previously.?

Consider first the heat capacity as a function of
temperature; a sensitive representation of this quantity
is the equivalent Debye temperature ©. From the
4.2°K elastic constants of Kamm and Alers,® and a
value of 110.6a,® for the volume per atom at 7'=0,! we
calculated ®=430.5°K at 7=0. Note that Kamm and
Alers obtained 430.3°K; this difference is presumably
due to the use of a slightly different atomic volume, and
is completely negligible in the present work. Berg?
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measured the heat capacity and tabulated @ for
T=2.7-20°K; here it was not necessary to make
Cp—Cy or volume corrections, but the electronic heat
capacity was subtracted to obtain the lattice contribu-
tion. At higher temperatures we took tabulated values
of Cp from two standard references®® and found these
to be in good agreement ; these data were then corrected
to Cy(V,T), then to Cy(V,,T), and finally the measured
electronic contribution” was subtracted to obtain the
lattice heat capacity and then the equivalent ©. The
experimental results are shown in Fig. 1.

Figure 1 also shows the theoretical ® as a function of
T, based on a harmonic calculation of the lattice
specific heat at fixed volume V,. At nonzero tempera-
tures, the calculation counted 915 k vectors in 1/48 of
the Brillouin zone, equivalent to 32 059 points in the
entire zone; this gives @ (7) accurately down to about
8°K. At T'=0 the calculation was based on the theo-
retical long-wavelength-phonon velocities, just as in the
calculation based on the measured elastic constants; the
O(T) curve was then interpolated from 0-8°K. At
T=0 the value is ®=406°K; this large discrepancy
(5.6%) from the experimental result shows the theo-
retical sound velocities (long-wavelength acoustic-
phonon velocities) must be significantly different from
experimental results. The initial increase of ® with T
at low T reflects the phonon dispersion in the following
way : The frequency wy, of a phonon with wave vector
k and polarization s may be written, in the long-wave-
length limit for a fixed direction of k,

ke o || F AR - - .

The value of ©® at T=0 is determined by the velocities
¢s. Since O increases as T increases from 7'=0, the
quantities d, must be positive for a significant number
of the low-lying (transverse) branches. The theory is
seen to agree with experiment in this respect, showing
an increase in @ of about the right magnitude and at
about the right temperature. Above 50°K, the calcu-
lated and measured @ are in excellent agreement. In
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this region the variation of ® with T is determined by
the even moments of the frequency distribution.

Now consider the thermal-expansion coefficient 3. As
we previously pointed out,? the quantity which is simple
to calculate and which provides the most direct inter-
pretation is the dimensionless combination 8BrQ,/3K,
where By is the isothermal bulk modulus, @, is the T=0
volume per atom, and K is the Boltzmann constant.
This quantity is simply a weighted average of the
phonon Griineisen parameters yxs, which are defined by

Yrs= — (d Inwys)/d InV.

For the measured 8 at P=0 we used Kirby’s tabu-
lation?; this table is in good agreement with published

$D. C. Wallace, Phys. Rev. 176, 832 (1968).

measurements for aluminum.’® The adiabatic bulk
modulus was taken from the measurements of Kamm
and Alers,® the isothermal bulk modulus was then
calculated, and the thermodynamic correction to fixed
volume Vo was carried out for the quantity 8By. This
volume correction was negligibly small, being less than
19 up to 300°K, because of the near cancellation of the
corrections for 8 and Bg. The experimental curve is
shown in Fig. 2; above 300°K the value is questionable,
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since there we relied on an interpolation of the bulk
modulus toward the high-temperature data of Sutton.!

To calculate the thermal expansion, we first calcu-
lated the Griineisen parameters ;. Our computational
errors are at most 19, for the vy, ; the result for k along
symmetry directions is shown in Fig. 3. Just as in the
calculations for lithium, an abundant number of Kohn
anomalies are apparent in the vy, curves.’? Although
there have not yet been any direct measurements of
ks, We are in hopes these will soon be carried out by
neutron-scattering experiments on crystals under pres-
sure. The calculated quasiharmonic curve of 8BrQ,/3K
as a function of 7T is shown in Fig. 2; the calculation is
lower than the experimental result by about 129 at all
temperatures. From this comparison, and since the
calculated and measured © are in agreement for
T>350°K, we can conclude approximately that the
calculated vk, are more or less uniformly too small by
about 129,

TasiE I. Measured elastic constants at zero temperature, and
pressure derivatives at room temperature, compared with values
calculated by the method of long waves at zero temperature, for
aluminum. 2,Cqg and QB are in Ry, and the pressure derivatives
are dimensionless.

Quantity Experiment Theory
Q,Cu1 0.859 0.60
Q,C2 0.466 0.32
Q2,Ca4 0.238 0.26
Q.B 0.597 0.41
dBu/dP 6.35 5.1
dBi12/dP 3.45 3.0
dBy/dP 2.10 2.0
dB/dP 4.42 3.7
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Finally, in Table I we compare the calculated and
measured elastic constants and their pressure deriva-
tives. The experimental values for the elastic constants
Cas and the bulk modulus B are the 4.2°K results of
Kamm and Alers.® When pressure is applied to the
sample, the quantities directly measured are pressure
derivatives of the Birch coefficients B,g!?; the experi-
mental pressure derivatives are the room-temperature
results of Thomas.'* The calculated values were ob-
tained by the method of long waves. Since at P=0 the
Cap are proportional to wy? for the long-wavelength
phonons, the percentage difference between experiment
and theory will be roughly twice as much for the C,s as
for the corresponding wy,. Indeed the measured C,s are
much larger overall than the calculated values. The
measured pressure derivatives are also larger than the
calculated values; this comparison is more approximate
since the measurements are at room temperature, while
the calculations correspond to T'=0.

We might conclude by considering what steps could
be taken to bring the theory into better agreement with
experiment; we recall, however, the well-taken remarks
of Harrison,’ that the pseudopotential perturbation
theory is by nature approximate and should not be
expected to reproduce all the experimental results.
Nevertheless, the theory as presently developed is
inconsistent in that the methods of long waves and
homogeneous deformation do not give the same results
for the longitudinal elastic constants.!® This incon-
sistency, which relates directly to the discrepancies
between theory and experiment we have noted here,
can be removed by including higher-order pseudo-
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potential terms in the dynamical matrix, especially in
the long-wavelength limit. The required terms may be
obtained by calculating the dielectric function to second
order in the local pseudopotential, then keeping all
terms in the dynamical matrix which are of second order
in umklapp scatterings. We have not yet evaluated
these terms numerically, but it appears they may give
a significant contribution to the theoretical phonon
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spectrum for aluminum. In addition the effect on the
screening of the electronic exchange and correlation has
been included by the Hubbard-Sham approximation in
our formulation?; the accuracy of this approximation is
quite unknown at present. We have neglected the
explicit anharmonic free energy in our calculations; it
is unlikely that this neglect significantly affects the
discrepancies found here.
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A quantum theory of diffusion is presented and applied to the particular problem of light interstitial
diffusion. The theory focuses attention on transitions among approximate localized eigenstates of the
system. The diffusion rate of a light interstitial in bce metals is shown to be determined principally by the
self-trapping distortion which stabilizes the impurity at a particular interstice. A quantitative explanation of
both the motion energy and the motion entropy follows from the theory. The differences between interstitial
motion in bee and fcc hosts, and also the dependence of the diffusion rate on isotopic mass, are discussed.

1. INTRODUCTION

EVERAL efforts have been made to develop a

quantum theory of diffusion since the early work

of Wigner.! The classical theory, as developed for solid-

state processes by Wert and Zener? and by Vineyard,3

specifies the jump rate W in terms of Gibbs functions
for different configurations of the system:

W= (kT /h)eo/*T.

Here g=G,—Go, with G, the Gibbs function of the
crystal vibrating with all atoms vibrating about points
of stable equilibrium near regular lattice sites; G, is
the Gibbs function when the diffusive jump process is
arrested in the saddlepoint plane between the points
of stable equilibrium. Both Gibbs functions, of course,
are essentially entropies of the crystal together with
its enclosing constant temperature and pressure bath.
The classical formulation encounters a fundamental
difficulty in that there exists no operationally satis-
factory way of defining G,. Despite this difficulty,
attempts have been made to obtain quantum results
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in the spirit of rate theory by an explicit treatment of
the motion of a representative point through a model
potential barrier in configuration space. The most
recent and successful of these treatments are due to
Weiner? and to Weiner and Partom?®; references to re-
lated work will be found in these papers. It is widely
believed that the classical theory must provide a correct
description of diffusion for temperatures in excess of
the Debye temperature ®p at which the lattice vibra-
tional energy becomes sensibly classical, and this has
motivated quasiclassical discussions.

In this paper we derive an alternative and more satis-
factory quantum theory of diffusion by focusing atten-
tion first on the question of the exact eigenstates of a
system in which diffusion occurs. Diffusive jumps then
appear as transitions which are induced by the crystal
Hamiltonian among the approximate eigenstates, each
of which is localized near some equilibrium point in con-
figuration space. Detailed balance is assured by the
Hermitian properties of the crystal Hamiltonian. From
a formal point of view the theory is closely related to
well-known treatments of the polaron problem® and of
radiationless transitions.” After presenting the general
theory in Sec. 2, we turn in Sec. 3 to a detailed treat-
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